

ИНСТРУКЦИЯ ПО ЗАПУСКУ ТЕСТОВ НА МОДУЛЯХ НА БАЗЕ 1892ВМ14Я

Версия v3.1 01.11.2019

ОГЛАВЛЕНИЕ

1	О до	кументе	3				
2	Подготовка модуля к тестированию						
3	Тесты						
	3.1	Audio	5				
	3.2	Bluetooth	6				
	3.3	CAN	7				
	3.4	CPU	9				
	3.5	CPUfreq	10				
	3.6	Ethernet	11				
	3.7	GPU	12				
	3.8	HDMI-audio	13				
	3.9	I2C	13				
	3.10	IEEE 802.15.4	14				
	3.11	LEDs	15				
	3.12	NAND	15				
	3.13	PWM	21				
	3.14	RAM	22				
	3.15	RTC	23				
	3.16	SD/MMC	24				
	3.17	SDMA	24				
	3.18	SPI FLASH	25				
	3.19	System Sleep	25				
	3.20	UART	26				
	3.21	USB	29				
	3.22	VPIN	30				
	3.23	VPOUT	31				
	3.24	VPU	33				
	3.25	Watchdog timer	34				
	3.26	Wi-Fi	34				

1. О ДОКУМЕНТЕ

Документ описывает тесты из состава дистрибутива ОС GNU/Linux на базе Buildroot 3.1 для модулей на базе 1892BM14Я.

Поддерживаются следующие модули:

- Салют-ЭЛ24Д1 r1.3;
- Салют-ЭЛ24Д1 г1.4;
- Салют-ЭЛ24Д1 r1.5;
- Салют-ЭЛ24Д2 r1.1;
- Салют-ЭЛ24ОМ1 r1.1 с установленным Салют-ЭЛ24ПМ1 r1.1 или Салют-ЭЛ24ПМ1 r1.2;
- Салют-ЭЛ24ОМ1 r1.2 с установленным Салют-ЭЛ24ПМ1 r1.2, Салют-ЭЛ24ПМ2 r1.0 или Салют-ЭЛ24ПМ2 r1.1.

Описание каждого теста состоит из следующих секций:

- 1. "Применимость" содержит список модулей, для которых применим данный тест.
- 2. "Назначение теста" содержит назначение теста.
- 3. "Алгоритм теста" содержит краткое описание алгоритма теста.
- 4. "Подготовка к тестированию" содержит инструкции по подготовке и настройке дополнительного оборудования (секция может отсутствовать если отсутствует дополнительное оборудование).
- 5. "Запуск теста" команда, которую необходимо ввести в терминал модуля для запуска теста.
- 6. "Ожидаемое время исполнения" время, через которое ожидается успешное завершение теста.
- "Пример результата теста" пример вывода сообщений при успешном завершении теста¹.
- 8. "Критерий прохождения теста" список критериев, при выполнении которых тест считается пройденным успешно.

¹ При запуске тестов по терминалу UART сообщения ядра Linux выводятся в терминал. По умолчанию при запуске тестов через терминал SSH сообщения ядра Linux не выводятся. Для вывода сообщений ядра Linux в терминал SSH необходимо после логина выполнить команду dmesg -n8.

2. ПОДГОТОВКА МОДУЛЯ К ТЕСТИРОВАНИЮ

Перед запуском тестов необходимо подготовить модуль согласно главе "Запуск модуля" документа "Дистрибутив ОС GNU/Linux на базе Buildroot для 1892BM14Я. Руководство программиста".

В терминале модуля перед запуском необходимо установить регулятор масштабирования тактовой частоты ядер CPU в значение *performance*:

echo performance > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

Установку регулятора необходимо выполнять после каждой перезагрузки операционной системы.

3. ТЕСТЫ

3.1 Audio

Применимость: Салют-ЭЛ24Д1, Салют-ЭЛ24ОМ1.

Назначение теста:

Для проверки записи звука через линейный вход Line In и воспроизведения звука через линейный выход Line Out модуля.

Алгоритм теста:

- 1. Записать исходный звуковой сигнал, поступающий на линейный вход Line In модуля, с линейного выхода Line Out ПЭВМ.
- 2. Воспроизвести записанный звуковой сигнал через линейный выход Line Out модуля.
- 3. Сравнить воспроизведенный звуковой сигнал с исходным.

Подготовка к тестированию:

- 1. Соединить кабелем линейный вход Line In модуля и линейный выход Line Out ПЭВМ.
- 2. Подключить наушники к линейному выходу Line Out модуля.

Предупреждение: При подключении наушников к линейному выходу Line Out модуля уровень громкости может быть низким.

3. Настроить модуль на запись с линейного входа Line In.

Внимание: По умолчанию модуль Салют-ЭЛ24ОМ1 настроен на запись с микрофона. Для настройки модуля на запись с линейного входа Line In выполнить команду amixer -q cset name='Capture Mux' 1 в терминале модуля.

- 4. Настроить ПЭВМ (ОС, аудиоплеер) на воспроизведение звука через линейный выход Line Out.
- 5. Подготовить аудиофайл для воспроизведения на ПЭВМ.
- 6. Включить воспроизведение аудиофайла через линейный выход Line Out ПЭВМ.

Запуск теста:

arecord -f dat -d 30 test.wav aplay test.wav

Инструкция по запуску тестов на модулях на базе 1892ВМ14Я

Ожидаемое время исполнения: 60 секунд.

Критерий прохождения теста:

Тест считать успешно пройденным, если звуковой сигнал, воспроизведенный через линейный выход Line Out модуля, соответствует аудиофайлу, воспроизведенному на ПЭВМ.

3.2 Bluetooth

Применимость: Салют-ЭЛ24ОМ1.

Назначение теста:

Для проверки работоспособности Bluetooth. Для теста необходимы дополнительные устройства:

• Bluetooth-адаптер.

Алгоритм теста:

На модуле и ПЭВМ включается обнаружение устройства, производится сканирование устройств в зоне радиовидимости.

Подготовка к тестированию:

1. В терминале ПЭВМ выполнить команду для установки пакета BlueZ:

sudo yum install bluez

2. В терминале ПЭВМ выполнить:

sudo setcap 'cap_net_raw,cap_net_admin+eip' `which bluetoothctl`

- 3. Подключить Bluetooth-адаптер к ПЭВМ.
- 4. В терминале модуля выполнить:

btattach -B /dev/ttyS1 -P bcm &

Команда подключает последовательное устройство через UART HCI к стеку BlueZ на модуле.

5. В терминалах ПЭВМ и модуля выполнить команду и считать MAC-адреса ПЭВМ и модуля в поле Controller:

bluetoothctl

Команда запускает утилиту интерактивного управления интерфейсом Bluetooth. Дальнейшие команды вводятся в терминале утилиты.

6. В терминалах ПЭВМ и модуля выполнить:

power on

Команда конфигурирует на ПЭВМ и на модуле интерфейс hci0.

7. В терминалах ПЭВМ и модуля выполнить:

discoverable on

Команда включает обнаружение устройств.

Запуск теста:

В терминалах ПЭВМ и модуля выполнить:

scan on

Команда запускает поиск доступных устройств в зоне радиовидимости.

Ожидаемое время исполнения: около 15 секунд.

Пример результата теста:

Device AA:AA:AA:AA:AA:AA Name: mcom02

Критерий прохождения теста:

- в выводе команды в терминале модуля присутствует строка, содержащая МАСадрес ПЭВМ,
- в выводе команды в терминале ПЭВМ присутствует строка, содержащая МАСадрес модуля.

3.3 CAN

3.3.1 Тест передачи данных

Применимость: Салют-ЭЛ24Д1, Салют-ЭЛ24Д2, Салют-ЭЛ24ОМ1.

Назначение теста:

Для проверки работоспособности шины CAN используется утилита canfdtest. Для теста необходимо дополнительное устройство — модуль Салют-ЭЛ24Д1, Салют-ЭЛ24Д2, или Салют-ЭЛ24ОМ1 (далее — ответный модуль).

Алгоритм теста:

Проверяемый модуль генерирует кадры данных, передает их по шине и сравнивает с полученными. Ответный модуль ретранслирует принятые кадры, увеличивая значение каждого байта данных на единицу.

Подготовка к тестированию:

1. Подключить проверяемый и ответный модули по шине CAN. Для подключения соединить контакты *CAN-H*, *CAN-L* и *GND* разъемов CAN модулей (*XP1* для модулей Салют-ЭЛ24Д1; *XP2* для модулей Салют-ЭЛ24Д2, *XP6* для модулей Салют-ЭЛ24OM1).

Предупреждение: На модуле Салют-ЭЛ24Д1 г1.3 назначение выводов разъема САN отличается от общепринятого: см. "Модуль Салют-ЭЛ24Д1 геv. 1.3. Руководство пользователя"

- 2. Подготовить проверяемый и ответный модули согласно главе "Подготовка модуля к тестированию".
- 3. В терминале ответного модуля выполнить команду: canfdtest can0.

Запуск теста:

```
timeout -t 15 -s KILL canfdtest -g -l 1024 can0
```

Ожидаемое время исполнения: 15 секунд.

Внимание: После завершения теста необходимо прервать выполнение команды canfdtest на ответном модуле нажатием Ctrl+C в терминале.

Пример результата теста:

```
interface = can0, family = 29, type = 3, proto = 1
```

Test messages sent and received: 1024

Критерий прохождения теста:

Tect считать успешно пройденным при выводе строки: Test messages sent and received: 1024.

3.3.2 Тест пропускной способности

Применимость: Салют-ЭЛ24Д1, Салют-ЭЛ24Д2, Салют-ЭЛ24ОМ1.

Назначение теста:

Для проверки пропускной способности шины CAN используется утилита canbusload. Для теста необходимо дополнительное устройство — модуль Салют-ЭЛ24Д1, Салют-ЭЛ24Д2, или Салют-ЭЛ24ОМ1 (далее — ответный модуль).

Алгоритм теста:

Проверяемый модуль генерирует и передает по шине кадры случайных данных, одновременно прослушивая шину для измерения пропускной способности. Ответный модуль подтверждает принятые кадры данных в соответствии со стандартом CAN.

Подготовка к тестированию:

1. Подключить проверяемый и ответный модули по шине CAN. Для подключения соединить контакты *CAN-H*, *CAN-L* и *GND* разъемов CAN модулей (*XP1* для модулей Салют-ЭЛ24Д1; *XP2* для модулей Салют-ЭЛ24Д2, *XP6* для модулей Салют-ЭЛ24OM1).

2. Подготовить проверяемый и ответный модули согласно главе "Подготовка модуля к тестированию".

Запуск теста:

```
timeout -t 15 -s KILL canbusload -t -b -e can0@125000 &
timeout -t 15 -s KILL cangen -g 0 -p 1 can0
```

Ожидаемое время исполнения: 15 секунд.

Пример результата теста:

```
canbusload 2016-08-16 17:36:18 (exact bitstuffing)
can0@125000 1171 110794 52344 88% |XXXXXXXXXXXXXXXXXXXXXXX
```

Критерий прохождения теста:

Загрузка шины (пятое число в последней строке) должна быть более 80%.

3.4 CPU

Применимость: Салют-ЭЛ24Д1, Салют-ЭЛ24Д2, Салют-ЭЛ24ОМ1.

Назначение теста:

Для проверки производительности двух ядер процессора СнК в целочисленных задачах используется утилита Coremark.

При выполнении не должно быть запущено других приложений и подключено устройств USB.

Запуск теста:

coremark

Ожидаемое время исполнения: 20 секунд.

[0]crcmatrix : 0x1fd7 [1]crcmatrix : 0x1fd7 [0]crcstate : 0x8e3a [1]crcstate : 0x8e3a [0]crcfinal : 0x25b5 [1]crcfinal : 0x25b5 Correct operation validated. See readme.txt for run and reporting rules. CoreMark 1.0 : 6010.066862 / GCC5.2.0 -D_LARGEFILE_SOURCE -D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64 -0s / Heap / 2:PThreads

Критерий прохождения теста:

Значение поля Iterations/Sec должно быть не менее 5000.

3.5 CPUfreq

Применимость: Салют-ЭЛ24Д1, Салют-ЭЛ24Д2, Салют-ЭЛ24ОМ1.

Назначение теста:

Для проверки производительности ядер процессора СнК при различных частотах используется скрипт mcom02-cpufreq-test.sh.

При выполнении не должно быть запущено других приложений и подключено устройств USB.

Алгоритм теста:

- 1. Для governor'a ondemand скрипт считывает значения регистра APLL до запуска coremark (минимальное) и после (максимальное), сравнивает с ожидаемыми и выводит результат на экран.
- 2. Для governor'a userspace скрипт последовательно устанавливает каждое из доступных значений частоты, считывает значение регистра APLL, вычисляет значение частоты с помощью поля coremark Iterations/Sec, сравнивает с ожидаемыми и выводит результат на экран.
- 3. Если результат, полученный с помощью прямого чтения регистра APLL, совпадает со значением, установленным CPUFreq, на экран выводится сообщение "APLL test successful".
- 4. Если результат, полученный с помощью Coremark, отклоняется от значения, установленного CPUFreq, не более, чем на 5%, на экран выводится сообщение "Coremark test successful".

Запуск теста:

mcom02-cpufreq-test.sh

Ожидаемое время выполнения: около 2 минут.


```
Governor: ondemand
Frequency read from APLL: 312000, minimum, idle
APLL test successful
Frequency calculated from coremark results: 834016.
Coremark test successful
Frequency read from APLL: 816000, maximum, loaded
APLL test successful
Governor: userspace
Frequency read from APLL: 312000
APLL test successful
Frequency calculated from coremark results: 318116.
Coremark test successful
Frequency read from APLL: 408000
APLL test successful
Frequency calculated from coremark results: 416114.
Coremark test successful
Frequency read from APLL: 816000
APLL test successful
Frequency calculated from coremark results: 834552.
Coremark test successful
```

TEST PASSED

Критерий прохождения теста:

Тест считать успешно пройденным при выводе строки TEST PASSED.

3.6 Ethernet

Применимость: Салют-ЭЛ24Д1, Салют-ЭЛ24Д2, Салют-ЭЛ24ОМ1.

Назначение теста:

Для измерения скорости ввода-вывода через Ethernet используется утилита iperf. Для теста необходимо дополнительное устройство — ПК с ОС Linux и пакетом iperf версии 2.0.5.

Подготовка к тестированию:

- 1. Подключить модуль в сеть Ethernet.
- 2. Подключить ПК в сеть Ethernet общую с модулем.
- 3. Выяснить текущий IP-адрес модуля:
 - 1. В терминале модуля ввести команду ifconfig eth0.
 - 2. Считать IP-адрес модуля из поля inet вывода команды.

Запуск теста:

На модуле запустить сервер:

iperf --server

На ПК запустить клиент:

iperf --time=5 --client адрес-сервера

где адрес-сервера — значение IP-адреса модуля.

Ожидаемое время исполнения: не более 5 секунд.

Пример результата теста:

[ID] Interval Transfer Bandwidth [3] 0.0-5.0 sec 54 MBytes 85.4 Mbits/sec

Критерий прохождения теста:

Значение поля Bandwidth не менее 80 Mbits/sec для модулей Салют-ЭЛ24Д1, Салют-ЭЛ24Д2; не менее 340 Mbits/sec для модулей Салют-ЭЛ24ОМ1.

3.7 GPU

Применимость: Салют-ЭЛ24Д1, Салют-ЭЛ24Д2, Салют-ЭЛ24ОМ1.

Назначение теста:

Для измерения производительности графического ускорителя используется утилита cube из состава тестов драйвера Mali.

Подготовка к тестированию:

- 1. Подключить HDMI-монитор к соответствующему разъёму модуля.
- 2. Для модулей Салют-ЭЛ24Д1 или Салют-ЭЛ24Д2 выполнить загрузку драйвера vpoutfb:

modprobe vpoutfb

Запуск теста:

cd /opt/mali/cube
./cube

Ожидаемое время исполнения: бесконечно. Для завершения теста необходимо нажать Ctrl+C.

Пример результата теста:

 FPS:
 75.1

 FPS:
 75.5

 FPS:
 76.1

 FPS:
 75.6

 FPS:
 75.9

Критерий прохождения теста:

- 1. Средняя частота отрисовки кадров больше 75 кадров в секунду.
- 2. На HDMI-мониторе наблюдать вращающийся объект.

3.8 HDMI-audio

Применимость: Салют-ЭЛ24ОМ1.

Назначение теста:

Для проверки воспроизведения звука через интерфейс HDMI на мониторе.

Алгоритм теста:

- 1. Загрузить аудиофайл на модуль.
- 2. Воспроизвести аудиофайл через интерфейс HDMI модуля.

Подготовка к тестированию:

- 1. Соединить кабелем HDMI выход модуля и монитор.
- 2. Загрузить на модуль аудиофайл.
- 3. Определить идентификатор соответствующий аудиокарте HDMI. Идентификатор аудиокарты это значение поля card в выводе команды:

aplay -l

Запуск теста:

aplay -D plughw:<card_id>,0 file.wav,

где <card_id>— идентификатор аудиокарты HDMI, file.wav — загруженный аудиофайл.

Ожидаемое время исполнения: 35 секунд.

Критерий прохождения теста:

Тест считать успешно пройденным, если звуковой сигнал, воспроизведенный на HDMIмониторе, соответствует загруженному аудиофайлу.

3.9 I2C

Применимость: Салют-ЭЛ24Д1, Салют-ЭЛ24Д2.

Назначение теста:

Для тестирования скорости чтения и записи на шине I2C СнК используется утилита i2cdump.

Алгоритм теста:

Утилита считывает 256 регистров HDMI-контроллера, подключенного на частоте 100 КГц, через контроллер I2C1 СнК и выводит время прохождения теста. Скорость работы контроллера I2C1 на модуле — 100 Кб/с.

Размер переданных транзакций в тесте составляет:

9 (бит на фрейм) * 3 (фрейма — 2 с адресом, 1 с данными) * 256 (количество регистров, считывамое утилитой) * 256 (запусков утилиты) = 1 769 472 бит.

Для вычисления скорости необходимо разделить размер переданных транзакций на время прохождения теста.

Запуск теста:

time sh -c 'for i in `seq 1 256`; do i2cdump -y 1 0x4c b >/dev/null ; done'

Ожидаемое время исполнения: около 30 секунд.

Пример результата теста:

real 0m 28.68s user 0m 0.33s sys 0m 2.31s

Критерий прохождения теста:

Число (1769472/<real-time>)/100000 больше 0.5, где <real-time> — значение поля real из вывода теста в терминал. Т.е реальная пропускная способность I2C больше 50% от теоретической. Например, для данного теста 1769472/28.68/100000=0.61 > 0.5

3.10 IEEE 802.15.4

Применимость: Салют-ЭЛ24Д1, Салют-ЭЛ24Д2.

Назначение теста:

Для проверки связи по стандарту IEEE 802.15.4 (нижние уровни для семейства протоколов ZigBee) используется утилита ping6. Для теста необходимо дополнительное устройство — модуль Салют-ЭЛ24Д1, или Салют-ЭЛ24Д2 (далее — ответный модуль).

Подготовка к тестированию:

- 1. Установить антенны на разъемы ZigBee проверяемого и ответного модулей.
- Подготовить проверяемый и ответный модули согласно главе "Подготовка модуля к тестированию". При подготовке модулей настроить сетевой интерфейс 6LoW-PAN, задав для проверяемого модуля адрес fc00::1 (подробнее см. главу "Haстройка 6LoWPAN" документа "Дистрибутив ОС GNU/Linux на базе Buildroot для 1892BM14Я. Руководство программиста"). Для ответного модуля по умолчанию задан адрес fc00::2.

Запуск теста:

ping6 -I lowpan0 -c 5 fc00::2

Ожидаемое время исполнения: около 5 секунд.

Пример результата теста:

```
PING fc00::2 (fc00::2): 56 data bytes
64 bytes from fc00::2: seq=0 ttl=64 time=35.127 ms
64 bytes from fc00::2: seq=1 ttl=64 time=36.519 ms
64 bytes from fc00::2: seq=2 ttl=64 time=33.841 ms
64 bytes from fc00::2: seq=3 ttl=64 time=36.526 ms
64 bytes from fc00::2: seq=4 ttl=64 time=33.849 ms
--- fc00::2 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 33.841/35.172/36.526 ms
```

Критерий прохождения теста:

Значение поля packet loss (процент потери пакетов) равно 0%.

3.11 LEDs

Применимость: Салют-ЭЛ24Д1, Салют-ЭЛ24ОМ1.

Назначение теста:

Для проверки работоспособности светодиодов используется утилита ledtest.

Алгоритм теста:

- выключить все светодиоды на 1 с;
- для каждого светодиода выполнить: включить светодиод, через 1 с выключить светодиод;
- включить все светодиоды;
- выключить все светодиоды через 1 с;
- перевести все пины светодиодов в состояние как после включения модуля.

Запуск теста:

ledtest

Ожидаемое время исполнения: около 10 секунд.

Критерий прохождения теста:

Светодиоды работают согласно алгоритму утилиты.

3.12 NAND

3.12.1 mtd_pagetest

Применимость: Салют-ЭЛ24Д1, Салют-ЭЛ24Д2, Салют-ЭЛ24ОМ1.

Назначение теста:

Для технологического тестирования NAND-флеш памяти модуля используется модуль ядра mtd_pagetest.

Предупреждение: Запуск данного теста приведёт к потере данных на чипе NAND.

Запуск теста:

modprobe mtd_pagetest dev=0

Ожидаемое время исполнения: около 3 часов.

[138.955327]							
[138.956834]							
[138.962592]	<pre>mtd_pagetest: MTD device: 0</pre>						
[138.966489]	<pre>mtd_pagetest: MTD device size 4294967296, eraseblock</pre>						
size 1048576, page size 4096, count of eraseblocks 4096, pages per								
eraseblock 256, 00B size 224								
[138.980874]	<pre>mtd_test: scanning for bad eraseblocks</pre>						
[138.985713]	mtd_test: block 90 is bad						
[138.989372]	mtd_test: block 91 is bad						
[138.993520]	mtd_test: block 4092 is bad						
[138.997351]	mtd_test: block 4093 is bad						
[139.001180]	mtd_test: block 4094 is bad						
[139.005028]	mtd_test: block 4095 is bad						
[139.008862]	mtd_test: scanned 4096 eraseblocks, 6 are bad						
[139.014261]	<pre>mtd_pagetest: erasing whole device</pre>						
[149.217664]	mtd_pagetest: erased 4096 eraseblocks						
[149.222367]	<pre>mtd_pagetest: writing whole device</pre>						
[149.653784]	<pre>mtd_pagetest: written up to eraseblock 0</pre>						
[258.841520]	<pre>mtd_pagetest: written up to eraseblock 256</pre>						
[368.921588]	<pre>mtd_pagetest: written up to eraseblock 512</pre>						
[479.057226]	mtd_pagetest: written up to eraseblock 768						
[589.401764]	mtd_pagetest: written up to eraseblock 1024						
[700.129340]	mtd_pagetest: written up to eraseblock 1280						
[810.430958]	<pre>mtd_pagetest: written up to eraseblock 1536</pre>						
[920.510587]	<pre>mtd_pagetest: written up to eraseblock 1792</pre>						
[1030.427427]	mtd_pagetest: written up to eraseblock 2048						
[1140.465299]	mtd_pagetest: written up to eraseblock 2304						
[1250.483171]	mtd_pagetest: written up to eraseblock 2560						
[1360.513440]	mtd_pagetest: written up to eraseblock 2816						
[1470.596688]	<pre>mtd_pagetest: written up to eraseblock 3072</pre>						
[1580.443776]	<pre>mtd_pagetest: written up to eraseblock 3328</pre>						
[1690.302049]	mtd_pagetest: written up to eraseblock 3584						
[1800.225171]	mtd_pagetest: written up to eraseblock 3840						
[1908.080495]	mtd_pagetest: written 4096 eraseblocks						
[1908.085295]	<pre>mtd_pagetest: verifying all eraseblocks</pre>						


```
[ 1909.169019] mtd_pagetest: verified up to eraseblock 0
[ 2183.178217] mtd pagetest: verified up to eraseblock 256
[ 2459.348834] mtd_pagetest: verified up to eraseblock 512
[ 2735.518683] mtd_pagetest: verified up to eraseblock 768
[ 3011.688729] mtd_pagetest: verified up to eraseblock 1024
[ 3287.857647] mtd_pagetest: verified up to eraseblock 1280
[ 3564.028262] mtd_pagetest: verified up to eraseblock 1536
[ 3840.199111] mtd_pagetest: verified up to eraseblock 1792
[ 4116.369468] mtd_pagetest: verified up to eraseblock 2048
[ 4392.540322] mtd_pagetest: verified up to eraseblock 2304
[ 4668.710759] mtd_pagetest: verified up to eraseblock 2560
[ 4944.881290] mtd_pagetest: verified up to eraseblock 2816
[ 5221.052029] mtd_pagetest: verified up to eraseblock 3072
[ 5497.222882] mtd pagetest: verified up to eraseblock 3328
[ 5773.393804] mtd_pagetest: verified up to eraseblock 3584
[ 6049.564345] mtd_pagetest: verified up to eraseblock 3840
[ 6320.337449] mtd_pagetest: verified 4096 eraseblocks
[ 6320.342356] mtd_pagetest: crosstest
[ 6320.347278] mtd_pagetest: reading page at 0x0
[ 6320.352387] mtd_pagetest: reading page at 0xffbff000
[ 6320.358056] mtd_pagetest: reading page at 0x0
[ 6320.363145] mtd_pagetest: verifying pages read at 0x0 match
[ 6320.368752] mtd_pagetest: crosstest ok
[ 6320.372538] mtd_pagetest: erasecrosstest
[ 6320.376463] mtd_pagetest: erasing block 0
[ 6320.383845] mtd_pagetest: writing 1st page of block 0
[ 6320.390027] mtd_pagetest: reading 1st page of block 0
[ 6320.395832] mtd_pagetest: verifying 1st page of block 0
[ 6320.401103] mtd_pagetest: erasing block 0
[ 6320.408484] mtd_pagetest: writing 1st page of block 0
[ 6320.414695] mtd pagetest: erasing block 4091
[ 6320.422533] mtd_pagetest: reading 1st page of block 0
[ 6320.428294] mtd_pagetest: verifying 1st page of block 0
[ 6320.433571] mtd_pagetest: erasecrosstest ok
[ 6320.437755] mtd_pagetest: erasetest
[ 6320.441263] mtd_pagetest: erasing block 0
[ 6320.448644] mtd_pagetest: writing 1st page of block 0
[ 6320.454844] mtd_pagetest: erasing block 0
[ 6320.462224] mtd_pagetest: reading 1st page of block 0
[ 6320.467983] mtd_pagetest: verifying 1st page of block 0 is all 0xff
[ 6320.474312] mtd_pagetest: erasetest ok
[ 6320.478064] mtd_pagetest: finished with 0 errors
```

Критерий прохождения теста:

В предпоследней строке вывода указано 0 ошибок: "mtd_pagetest: finished with 0 errors".

3.12.2 mtd_speedtest

Применимость: Салют-ЭЛ24Д1, Салют-ЭЛ24Д2, Салют-ЭЛ24ОМ1.

Назначение теста:

Для измерения скорости ввода-вывода NAND-флеш памяти используется модуль ядра mtd_speedtest.

Предупреждение: Запуск данного теста приведёт к потере данных на чипе NAND.

Запуск теста:

modprobe mtd_speedtest dev=0 count=128

Ожидаемое время исполнения: около 8 минут

```
[
   83.724711]
Γ
   83.731956] mtd_speedtest: MTD device: 0
Γ
                                             count: 128
   83.737128] mtd_speedtest: MTD device size 4294967296, eraseblock
[
size 2097152, page size 8192, count of eraseblocks 2048, pages per
eraseblock 256, 00B size 640
   83.772247] mtd_test: scanning for bad eraseblocks
[
   83.777084] mtd test: scanned 128 eraseblocks, 0 are bad
[
  84.360363] mtd_speedtest: testing eraseblock write speed
[
 174.750650] mtd_speedtest: eraseblock write speed is 2900 KiB/s
[
 174.756573] mtd_speedtest: testing eraseblock read speed
[
[ 217.020337] mtd_speedtest: eraseblock read speed is 6203 KiB/s
[
 217.599805] mtd_speedtest: testing page write speed
[ 307.963326] mtd_speedtest: page write speed is 2901 KiB/s
  307.968726] mtd_speedtest: testing page read speed
Γ
[ 350.338617] mtd_speedtest: page read speed is 6187 KiB/s
[ 350.915537] mtd_speedtest: testing 2 page write speed
 441.039789] mtd_speedtest: 2 page write speed is 2908 KiB/s
[
[ 441.045375] mtd_speedtest: testing 2 page read speed
  483.391012] mtd speedtest: 2 page read speed is 6191 KiB/s
Г
[ 483.396497] mtd_speedtest: Testing erase speed
[ 483.969965] mtd_speedtest: erase speed is 460710 KiB/s
  483.975117] mtd_speedtest: Testing 2x multi-block erase speed
Γ
 484.551902] mtd_speedtest: 2x multi-block erase speed is 458293 KiB/s
[
  484.558342] mtd_speedtest: Testing 4x multi-block erase speed
[
[ 485.134180] mtd_speedtest: 4x multi-block erase speed is 459096 KiB/s
[ 485.140632] mtd_speedtest: Testing 8x multi-block erase speed
[ 485.715748] mtd_speedtest: 8x multi-block erase speed is 460710 KiB/s
[ 485.722199] mtd_speedtest: Testing 16x multi-block erase speed
 486.298030] mtd_speedtest: 16x multi-block erase speed is 459901 KiB/s
[
[ 486.304571] mtd_speedtest: Testing 32x multi-block erase speed
[ 486.879625] mtd_speedtest: 32x multi-block erase speed is 460710 KiB/s
```


Критерии прохождения теста:

- 1. Скорость записи eraseblock должна быть больше 2100 KiB/s.
- 2. Скорость чтения eraseblock должна быть больше 5100 KiB/s.
- 3. Скорость стирания должна быть больше 270000 KiB/s.

3.12.3 UBIFS

Применимость: Салют-ЭЛ24Д1, Салют-ЭЛ24Д2, Салют-ЭЛ24ОМ1.

Назначение теста:

Для проверки работоспособности файловой системы UBIFS на чипе NAND модуля используется утилита fio. Для создания, монтирования ФС и запуска утилиты используется скрипт ubitest.sh.

Алгоритм теста:

- 1. Форматировать устройство в том UBI с помощью утилиты ubiformat.
- 2. Создать раздел UBIFS максимального размера на устройстве.
- 3. Монтировать раздел в точку монтирования /mnt/ubifs.
- 4. Записать и верифицировать указанный в аргументах объём данных с помощью утилиты fio.
- 5. Очистить раздел и размонтировать его.

Предупреждение: Запуск данного теста приведёт к потере данных на чипе NAND.

Запуск теста:

ubitest.sh /dev/mtd0 800

Ожидаемое время исполнения: около 3 минут.

```
1..3
[ 102.134366] ubi0: attaching mtd0
[ 107.408961] ubi0: scanning is finished
[ 107.426138] ubi0: attached mtd0 (name "arasan_nfc", size 2048 MiB)
[ 107.432337] ubi0: PEB size: 524288 bytes (512 KiB), LEB size: 516096 bytes
[ 107.439205] ubi0: min./max. I/O unit sizes: 4096/4096, sub-page size 4096
[ 107.445997] ubi0: VID header offset: 4096 (aligned 4096), data offset: 8192
```



```
[ 107.452961] ubi0: good PEBs: 4081, bad PEBs: 15, corrupted PEBs: 0
[ 107.459131] ubi0: user volume: 0, internal volumes: 1, max. volumes count: 128
[ 107.466352] ubi0: max/mean erase counter: 10/7, WL threshold: 4096, image
→sequence number: 1771060986
[ 107.475572] ubi0: available PEBs: 4012, total reserved PEBs: 69, PEBs reserved
\rightarrow for bad PEB handling: 65
[ 107.484968] ubi0: background thread "ubi_bgt0d" started, PID 176
[ 107.547562] UBIFS (ubi0:0): default file-system created
[ 107.553590] UBIFS (ubi0:0): background thread "ubifs_bgt0_0" started, PID 182
[ 107.818682] UBIFS (ubi0:0): UBIFS: mounted UBI device 0, volume 0, name "full_
→ubi"
[ 107.826275] UBIFS (ubi0:0): LEB size: 516096 bytes (504 KiB), min./max. I/0]
→unit sizes: 4096 bytes/4096 bytes
[ 107.836209] UBIFS (ubi0:0): FS size: 2064900096 bytes (1969 MiB, 4001 LEBs),
→ journal size 33546240 bytes (31 MiB, 65 LEBs)
[ 107.847259] UBIFS (ubi0:0): reserved for root: 4952683 bytes (4836 KiB)
[ 107.853891] UBIFS (ubi0:0): media format: w4/r0 (latest is w4/r0), UUID]
↔07FF4EB6-C3B4-4FA1-B1A3-D149F334F5E8, small LPT model
ok 1 - Create and mount UBIFS partition
ok 2 - Write and verify with fio
[ 496.469464] UBIFS (ubi0:0): un-mount UBI device 0
[ 496.474210] UBIFS (ubi0:0): background thread "ubifs_bgt0_0" stops
[ 496.531859] ubi0: detaching mtd0
[ 496.537660] ubi0: mtd0 is detached
[ 496.544388] ubi0: attaching mtd0
[ 501.832063] ubi0: scanning is finished
[ 501.851497] ubi0: attached mtd0 (name "arasan_nfc", size 2048 MiB)
[ 501.857688] ubi0: PEB size: 524288 bytes (512 KiB), LEB size: 516096 bytes
 501.864594] ubi0: min./max. I/O unit sizes: 4096/4096, sub-page size 4096
L
[ 501.871396] ubi0: VID header offset: 4096 (aligned 4096), data offset: 8192
 501.878353] ubi0: good PEBs: 4081, bad PEBs: 15, corrupted PEBs: 0
Г
[ 501.884549] ubi0: user volume: 1, internal volumes: 1, max. volumes count: 128
[ 501.891783] ubi0: max/mean erase counter: 11/7, WL threshold: 4096, image
→ sequence number: 1771060986
[ 501.901009] ubi0: available PEBs: 0, total reserved PEBs: 4081, PEBs reserved
\rightarrow for bad PEB handling: 65
[ 501.910324] ubi0: background thread "ubi_bgt0d" started, PID 192
[ 501.915863] UBIFS (ubi0:0): background thread "ubifs_bgt0_0" started, PID 194
502.314263] UBIFS (ubi0:0): UBIFS: mounted UBI device 0, volume 0, name "full_
→ubi"
[ 502.321852] UBIFS (ubi0:0): LEB size: 516096 bytes (504 KiB), min./max. I/0]
→unit sizes: 4096 bytes/4096 bytes
[ 502.331782] UBIFS (ubi0:0): FS size: 2064900096 bytes (1969 MiB, 4001 LEBs),
→ journal size 33546240 bytes (31 MiB, 65 LEBs)
[ 502.342829] UBIFS (ubi0:0): reserved for root: 4952683 bytes (4836 KiB)
[ 502.349444] UBIFS (ubi0:0): media format: w4/r0 (latest is w4/r0), UUID]
↔07FF4EB6-C3B4-4FA1-B1A3-D149F334F5E8, small LPT model
[ 506.869158] UBIFS (ubi0:0): un-mount UBI device 0
506.873897] UBIFS (ubi0:0): background thread "ubifs_bgt0_0" stops
[ 506.897651] ubi0: detaching mtd0
```



```
[ 506.904611] ubi0: mtd0 is detached
ok 3 - Test master node corruption after remount
TEST PASSED
```

Критерии прохождения теста:

Последняя строка вывода равна "TEST PASSED".

3.13 PWM

Применимость: Салют-ЭЛ24ОМ1.

Назначение теста:

Для проверки работоспособности PWM и возможности изменения яркости подсветки LCD на модуле.

Алгоритм теста:

- 1. Вывести тестовое изображение на LCD-монитор.
- 2. Установить яркость подсветки 95 процентов.
- 3. Установить яркость подсветки 5 процентов.

Подготовка к тестированию:

- 1. Подключить к разъему XS7 LCD-монитор EJ070NA-01J.
- Настроить вывод изображения на LCD-монитор EJ070NA-01J согласно пункту "Вывод изображения на LCD-монитор" главы "Настройка ОС" документа "Дистрибутив ОС GNU/Linux на базе Buildroot для 1892BM14Я. Руководство программиста".

Запуск теста:

1. Вывести тестовое изображение на LCD-монитор:

nohup ffmpeg -f lavfi -i testsrc=duration=30.0:size=1024x600 -f fbdev -pix_ →fmt bgra /dev/fb0 > /dev/null 2>&1 &

2. Установить яркость подсветки на 95 процентов:

echo 95 > /sys/class/backlight/backlight/brightness

3. Установить яркость подсветки на 5 процентов:

echo 5 > /sys/class/backlight/backlight/brightness

Критерий прохождения теста:

При вводе echo 95 ... яркость LCD-экрана должна отличаться от яркости при вводе команды echo 5

3.14 RAM

3.14.1 Memtester

Применимость: Салют-ЭЛ24Д1, Салют-ЭЛ24Д2, Салют-ЭЛ24ОМ1.

Назначение теста:

Для технологического тестирования динамической памяти модуля используется утилита memtester. С данными аргументами выделяется участок ОЗУ DDR размером в 512 МиБ.

Запуск теста:

memtester 512M 1

Ожидаемое время исполнения: не более 60 минут.

Пример результата теста:

Loop 1/1: Stuck Address : ok Random Value : ok Compare XOR : ok Compare SUB : ok Compare MUL : ok Compare DIV : ok Compare OR : ok Compare AND : ok Sequential Increment: ok Solid Bits : ok Block Sequential : ok Checkerboard : ok Bit Spread : ok Bit Flip : ok Walking Ones : ok Walking Zeroes : ok 8-bit Writes : ok Done.

Критерий прохождения теста:

Каждый алгоритм тестирования завершился успешно: строка завершается словом "ok".

3.14.2 Ramspeed

Применимость: Салют-ЭЛ24Д1, Салют-ЭЛ24Д2, Салют-ЭЛ24ОМ1.

Назначение теста:

Для измерения скорости чтения и записи в динамическую память модуля используется утилита ramspeed.

Запуск теста:

ramspeed -b 3

Ожидаемое время исполнения: менее 6 минут.

Пример результата теста:

```
RAMspeed (GENERIC) v2.6.0 by Rhett M. Hollander and Paul V. Bolotoff, 2002-09
```

8Gb per pass mode

INTEGER	Сору:	425.15	MB/s
INTEGER	Scale:	415.07	MB/s
INTEGER	Add:	391.94	MB/s
INTEGER	Triad:	386.52	MB/s
INTEGER	AVERAGE:	404.67	MB/s

Критерий прохождения теста:

Значение поля "AVERAGE" составляет не менее 400 MB/s.

3.15 RTC

Применимость: Салют-ЭЛ24ОМ1.

Назначение теста:

Для проверки установки и чтения времени на микросхеме RTC.

Подготовка к тестированию:

Необходимо установить батарейку CR2032 в отсек GB1 на модуле Салют-ЭЛ24OM1.

Алгоритм теста:

- 1. Установить текущее время в RTC.
- 2. Переключить питание на модуле.
- 3. Сверить время на модуле и текущее время.

Запуск теста:

1. Установить системное время модуля в соответствии с текущим временем:

date -s "yyyy-mm-dd hh:mm:ss"

2. Сохранить системное время модуля в микросхеме RTC:

hwclock -f /dev/rtc0 -w

- 3. Отключить питание на модуле. Подождать 5 с. Включить питание на модуле.
- 4. Считать время на модуле:

date

5. Вычислить разницу между текущим временем и временем на модуле.

Критерий прохождения теста:

Время на модуле отличается от текущего времени менее чем на 2 с.

3.16 SD/MMC

Применимость: Салют-ЭЛ24Д1, Салют-ЭЛ24Д2, Салют-ЭЛ24ОМ1.

Назначение теста:

Для измерения скорости чтения SD/MMC-карты используется утилита hdparm.

Запуск теста:

```
hdparm -t /dev/mmcblk0p1
```

Ожидаемое время исполнения: около 3 секунд.

Пример результата теста:

```
Timing buffered disk reads: 34 MB in 3.16 seconds = 10.76 MB/sec
```

Критерий прохождения теста:

Скорость чтения (последнее число в последней строке вывода) не менее 8.00 MB/sec для модулей Салют-ЭЛ24Д1, Салют-ЭЛ24Д2; не менее 18.00 MB/sec для модулей Салют-ЭЛ24OM1.

3.17 SDMA

Применимость: Салют-ЭЛ24Д1, Салют-ЭЛ24Д2, Салют-ЭЛ24ОМ1.

Назначение теста:

Проверка работоспособности SDMA.

Запуск теста:

dmatestcontig.sh

Ожидаемое время исполнения: около 5 секунд.

```
[ 81.562775] dmatestcontig: 2000 iteration by 4194304 bytes takes 6689554 nsecs:□

→1195 MiB/s

TEST PASSED
```


Критерий прохождения теста:

Вывод строки TEST PASSED.

3.18 SPI FLASH

Применимость: Салют-ЭЛ24Д1, Салют-ЭЛ24Д2, Салют-ЭЛ24ОМ1.

Назначение теста:

Для тестирования скорости чтения флеш-памяти, подключенной по SPI, используется утилита mtd_debug. Утилита считывает заданную, смещением и размером — область памяти. В данном тесте читается вся область SPI флеш-памяти.

Запуск теста:

time mtd_debug read /dev/mtd/by-name/spi0.0 0 4194304 /dev/null

Пример результата теста:

```
Copied 4194304 bytes from address 0x00000000 in flash to /dev/null
real 0m 1.47s
user 0m 0.00s
sys 0m 0.03s
```

Критерий прохождения теста:

- 1. Тест завершается без ошибок.
- 2. Значение в поле real— менее 2 секунд.

3.19 System Sleep

Применимость: Салют-ЭЛ24ОМ1.

Назначение теста:

Для тестирования перехода в состояние сна используется утилита rtcwake.

Алгоритм теста:

- 1. Настройка таймера RTC модуля на срабатывание через заданный интервал;
- 2. Перевод ОС в состояние standby;
- 3. Срабатывание таймера RTC модуля;
- 4. Пробуждение ОС и вывод из состояния standby.

Запуск теста:

rtcwake -s 2 -m standby && echo TEST PASSED

Ожидаемое время исполнения: 3 секунды.

rtcwake: assuming RTC uses UTC ... rtcwake: wakeup from "standby" using /dev/rtc0 at Mon Jun 4 10:58:44 2018 PM: Syncing filesystems ... done. Freezing user space processes ... (elapsed 0.001 seconds) done. Freezing remaining freezable tasks ... (elapsed 0.002 seconds) done. PM: suspend of devices complete after 147.175 msecs PM: late suspend of devices complete after 1.274 msecs PM: noirg suspend of devices complete after 1.215 msecs Disabling non-boot CPUs ... CPU1: shutdown Enabling non-boot CPUs ... CPU1 is up PM: noirq resume of devices complete after 0.766 msecs PM: early resume of devices complete after 0.788 msecs PM: resume of devices complete after 303.958 msecs Restarting tasks ... done. TEST PASSED

Критерий прохождения теста:

Тест считать успешно пройденным при выводе строки TEST PASSED.

3.20 UART

3.20.1 RS-232

Применимость: Салют-ЭЛ24Д1.

Назначение теста:

Для тестирования скорости порта RS-232 подключенного к UART-контроллеру CнK через RS-232-трансмиттер используется утилита uart_test_client.

Подготовка к тестированию:

Необходимо замкнуть контакты порта RS-232 (UART3, вилка XP2) модуля в режиме loopback, см. рисунок 3.1:

Рисунок 3.1. Включение режима loopback порта RS-232 на модулях Салют-ЭЛ24Д1

Запуск теста:

uart_test_client -p /dev/ttyS2 -t 128 -b 115200

Ожидаемое время исполнения: 10 секунд.

Пример результата теста:

```
UART port configuration:
        'baudrate': 115200,
{
        'bytesize': 8,
        'dsrdtr': False,
        'interCharTimeout': None,
        'parity': 'N',
        'rtscts': False,
        'stopbits': 1,
        'timeout': 2,
        'writeTimeout': None,
        'xonxoff': False}
total transferred data bytes : 128 KiB
elapsed time : 11.358398 sec
estimated baudrate (with stopbits): 103856 b/sec
performance efficiency: 90.153559 %
```

Критерий прохождения теста:

Значение поля performance efficiency составляет более 90%.

3.20.2 RS-485 (Салют-ЭЛ24Д1, Салют-ЭЛ24Д2)

Применимость: Салют-ЭЛ24Д1, Салют-ЭЛ24Д2.

Назначение теста:

Для тестирования скорости порта RS-485 подключенного к UART-контроллеру CнK через RS-485-трансмиттер используется утилита uart_test_client.

Подготовка к тестированию:

Необходимо замкнуть контакты порта RS-485 на тестируемом модуле:

• для модулей Салют-ЭЛ24Д1 — розетка XS6, см. рисунок 3.2;

Рисунок 3.2. Включение режима loopback порта RS-485 на модуле Салют-ЭЛ24Д1

• для модуля Салют-ЭЛ24Д2 — вилка ХР1, см. рисунок 3.3.

Запуск теста:

Рисунок 3.3. Включение режима loopback порта RS-485 на модуле Салют-ЭЛ24Д2

uart_test_client -p /dev/ttyS1 -t 128 -b 115200

Ожидаемое время исполнения: 10 секунд.

Пример результата теста:

```
UART port configuration:
        'baudrate': 115200,
{
        'bytesize': 8,
        'dsrdtr': False,
        'interCharTimeout': None,
        'parity': 'N',
        'rtscts': False,
        'stopbits': 1,
        'timeout': 2,
        'writeTimeout': None,
        'xonxoff': False}
total transferred data bytes : 128 KiB
elapsed time : 11.358398 sec
estimated baudrate (with stopbits): 103856 b/sec
performance efficiency: 90.153559 %
```

Критерий прохождения теста:

Значение поля performance efficiency составляет более 90%.

3.20.3 RS-485 (Салют-ЭЛ24ОМ1)

Применимость: Салют-ЭЛ24ОМ1.

Назначение теста:

Для тестирования скорости порта RS-485 подключенного к UART-контроллеру CнK через RS-485-трансмиттер в полудуплексе используется утилита uart_test_client.

Подготовка к тестированию:

Подключить ответное устройство к порту RS-485 (разъём XP6). В качестве ответного устройства может применяться другой модуль Салют-ЭЛ24ОМ1 или ПЭВМ с переходником USB-RS-485. Полярность подключения указана на разъёме модуля Салют-ЭЛ24ОМ1. На ответном устройстве запустить:

uart_test_server -p <serial-port> -t 128 --marker --rs485-half-duplex

Где <serial-port> — имя последовательного порта в системе. Для модуля Салют-ЭЛ24OM1 порт RS-485 имеет имя /dev/ttyS3. Для ПЭВМ имя порта зависит от используемого переходника USB-RS-485, например /dev/ttyUSB0.

Запуск теста:

uart_test_client -p /dev/ttyS3 -t 128 --marker --rs485-half-duplex

Ожидаемое время исполнения: 20 секунд.

Пример результата теста:

```
UART port configuration:
{
        'baudrate': 115200,
        'bytesize': 8,
        'dsrdtr': False,
        'interCharTimeout': None,
        'parity': 'N',
        'rtscts': False,
        'stopbits': 1,
        'timeout': 2,
        'writeTimeout': None,
        'xonxoff': False}
total transferred data bytes : 128 KiB
elapsed time : 11.358398 sec
estimated baudrate (with stopbits): 103856 b/sec
performance efficiency: 90.153559 %
```

Критерий прохождения теста:

Значение поля performance efficiency составляет более 90%.

3.21 USB

Применимость: Салют-ЭЛ24Д1, Салют-ЭЛ24Д2, Салют-ЭЛ24ОМ1.

Назначение теста:

Для измерения скорости передачи данных по USB используется утилита hdparm. Для тестирования необходимо дополнительное устройство — USB-флеш-накопитель (или внешний USB диск) со скоростью чтения не менее 25 МиБ/с.

Подготовка к тестированию:

Подключить дополнительное устройство к модулю. При подключении возможен вывод сообщений от ядра Linux в терминал модуля:


```
[ 4632.592024] sd 0:0:0:0: [sda] Write Protect is off
[ 4632.597252] sd 0:0:0:0: [sda] Asking for cache data failed
[ 4632.602741] sd 0:0:0:0: [sda] Assuming drive cache: write through
[ 4633.972193] sd 0:0:0:0: [sda] Attached SCSI removable disk
```

Эти сообщения являются стандартными и не влияют на результат прохождения теста.

Запуск теста:

hdparm -t /dev/sda

Ожидаемое время исполнения: около 3 секунд.

Пример результата теста:

Timing buffered disk reads: 88 MB in 3.01 seconds = 29.19 MB/sec

Критерий прохождения теста:

Последнее число в последней строке вывода (скорость чтения) составляет:

- для модулей Салют-ЭЛ24Д1, Салют-ЭЛ24Д2 не менее 25.00 MB/sec;
- для модулей Салют-ЭЛ24ОМ1 с установленным Салют-ЭЛ24ПМ1 не менее 5.00 MB/sec;
- для модулей Салют-ЭЛ24ОМ1 с установленным Салют-ЭЛ24ПМ2 не менее 25.00 MB/sec.

3.22 VPIN

Применимость: Салют-ЭЛ24Д1, Салют-ЭЛ24Д2, Салют-ЭЛ24ОМ1.

Назначение теста:

Для тестирования VPIN и видеосенсора, подключенного по интерфейсу MIPI CSI2.

Подготовка к тестированию:

См. документ "Инструкция по захвату видео с последовательного сенсора на модулях на базе микросхемы 1892ВМ14Я".

Запуск теста:

См. документ "Инструкция по захвату видео с последовательного сенсора на модулях на базе микросхемы 1892ВМ14Я".

Критерий прохождения теста:

На HDMI-мониторе появилось изображение с видеосенсора.

3.23 VPOUT

3.23.1 HDMI

Применимость: Салют-ЭЛ24Д1, Салют-ЭЛ24Д2.

Назначение теста:

Для тестирования работоспособности framebuffer-устройства VPOUT используется утилита mcom02-vpoutfb-test.sh.

Алгоритм теста:

Для каждого из списка стандартных разрешений:

- 1. Утилита выставляет разрешение.
- 2. Запускает проигрыватель с выводом видео на HDMI-монитор.

Подготовка к тестированию:

Подключить HDMI-монитор к соответствующему разъёму модуля.

Запуск теста:

modprobe vpoutfb
mcom02-vpoutfb-test.sh

Ожидаемое время выполнения: около 1 минуты.

Пример результата теста:

```
1..14
ok 1 - Resolution changed to 640x480
ok 2 - Playing video on resolution 640x480
ok 3 - Resolution changed to 720x480
ok 4 - Playing video on resolution 720x480
ok 5 - Resolution changed to 800x600
ok 6 - Playing video on resolution 800x600
ok 7 - Resolution changed to 1024x768
ok 8 - Playing video on resolution 1024x768
ok 9 - Resolution changed to 1280x720
ok 10 - Playing video on resolution 1280x720
ok 11 - Resolution changed to 1366x768
ok 12 - Playing video on resolution 1366x768
ok 13 - Resolution changed to 1920x1080
ok 14 - Playing video on resolution 1920x1080
```

Критерии прохождения теста:

- 1. Все строки вывода, за исключением первой, начинаются с ok.
- 2. После каждого вывода сообщения Playing video на HDMI-монитор выводится видео с отсчётом от 0 до 4.

3.23.2 LCD

Применимость: Салют-ЭЛ24ОМ1.

Назначение теста:

Для проверки работоспособности LCD-мониторов.

Алгоритм теста:

- 1. Настроить LCD-монитор EJ070NA-01J;
- 2. Отобразить тестовое изображение на LCD-мониторе EJ070NA-01J;
- 3. Настроить LCD-монитор АТ070TN92;
- 4. Отобразить тестовое изображение на LCD-мониторе AT070TN92.

Запуск теста:

- 1. Подключить к разъему XS7 LCD-монитор EJ070NA-01J;
- 2. Выполнить команду для определения id коннектора LCD-монитора:

modeprint vpout-drm

Определить секцию коннектора для этого монитора среди LVDS коннекторов. В качестве критерия поиска использовать значение разрешения 1024×600. Это значение соответствует полю mode искомой секции коннектора. Значение поля id этой секции соответствует id коннектора.

3. Вывести тестовое изображение на LCD-монитор:

modetest -M vpout-drm -s <id>:1024x600

где <id>— id коннектора из предыдущего пункта.

- 4. Подключить к разъему XS8 LCD-монитор AT070TN92;
- 5. Выполнить команду для определения id коннектора LCD-монитора:

modeprint vpout-drm

Определить секцию коннектора для этого монитора среди LVDS коннекторов. В качестве критерия поиска использовать значение разрешения 800х480. Это значение соответствует полю mode искомой секции коннектора. Значение поля id этой секции соответствует id коннектора.

6. Вывести тестовое изображение на LCD-монитор:

modetest -M vpout-drm -s <id>:800x480

где <id>— id коннектора из предыдущего пункта.

Критерий прохождения теста:

На обоих LCD-мониторах наблюдалось тестовое изображение.

3.24 VPU

Применимость: Салют-ЭЛ24Д1, Салют-ЭЛ24Д2, Салют-ЭЛ24ОМ1.

Назначение теста:

Для измерения производительности и тестирования функциональности блока аппаратного сжатия видео используется утилита fc-avico.

Алгоритм теста:

- 1. Сгенерировать тестовое видео.
- 2. Конвертировать тестовое видео в формат М420.
- 3. Сжать тестовое видео с помощью VPU.
- 4. Проверить, что скорость сжатия больше 30 кадров в секунду.

Подготовка к тестированию:

- 1. Подключить HDMI-монитор к соответствующему разъёму модуля.
- 2. Для модулей Салют-ЭЛ24Д1 или Салют-ЭЛ24Д2 выполнить загрузку драйвера vpoutfb:

modprobe vpoutfb

Запуск теста:

fc-avico

Ожидаемое время исполнения: первый запуск — около 15 секунд, повторные запуски — около 1 секунды.

```
Input #0, yuv4mpegpipe, from 'm420.y4m':
Input #0, yuv4mpegpipe, from 'm420.y4m':
Duration: Duration: 00:00:02.0000:00:02.00, start: , start: 0.0000000.000000, []
→bitrate: , bitrate: 276481 kb/s276481 kb/s
               Stream #0:0: Video: rawvideo (I420 / 0x30323449),
Stream #0:0
→yuv420p(progressive), 1280x720: Video: rawvideo (I420 / 0x30323449),
→yuv420p(progressive), 1280x720, , 25 fps, 25 tbr, 25 fps, 25 tbn, 25 tbr, 25
→tbc2 25 tbc
Card: avico
Control: h264_i_frame_qp_value = 28
Control: h264_p_frame_qp_value = 28
Control: h264_chroma_qp_index_offset = 0
Control: video_gop_size = 60
Output size: 85 KiB
Total time in main loop: 0.8 s (66.5 FPS)
Card: avico
Control: h264_i_frame_qp_value = 28
```



```
Control: h264_p_frame_qp_value = 28
Control: h264_chroma_qp_index_offset = 0
Control: video_gop_size = 60
Output size: 85 KiB
Total time in main loop: 0.7 s (66.8 FPS)
Checking results for thread #0
Checking results for thread #1
TEST PASSED
```

Критерий прохождения теста:

В конце вывода теста присутствует строка TEST PASSED.

После окончания работы тест сохранит сжатое видео в файлах /tmp/fc-avico/ encoded_0.264 и /tmp/fc-avico/encoded_1.264. Файл можно проиграть на HDMIмониторе с помощью команды:

ffmpeg -re -i /tmp/fc-avico/encoded_0.264 -pix_fmt bgra -f fbdev /dev/fb0

3.25 Watchdog timer

Применимость: Салют-ЭЛ24Д1, Салют-ЭЛ24Д2, Салют-ЭЛ24ОМ1.

Назначение теста:

Для тестирования работоспособности сторожевого таймера используется команда echo.

Алгоритм теста:

- 1. Включить сторожевой таймер командой echo.
- 2. Не выполнять сброс сторожевого таймера в течение 15с.
- 3. Убедиться, что произошла перезагрузка СнК.

Запуск теста:

echo 1 > /dev/watchdog

Ожидаемое время исполнения: 15-20 секунд.

Критерий прохождения теста:

В течение 15—20 секунд после запуска теста произошла перезагрузка СнК.

3.26 Wi-Fi

Применимость: Салют-ЭЛ24Д1, Салют-ЭЛ24Д2, Салют-ЭЛ24ОМ1.

Назначение теста:

Для измерения скорости и тестирования функциональности модуля Wi-Fi AP6210 используется утилита iperf. Для теста необходимы дополнительные устройства:

- ПК с OC Linux и пакетом iperf версии 2.0.5;
- Wi-Fi-роутер с поддержкой IEEE 802.11g и с возможностью подключения ПК через Ethernet.

Подготовка к тестированию:

- 1. Для модулей Салют-ЭЛ24ОМ1 установить переключатель XP4 в положение Wi-Fi.
- 2. Для модулей Салют-ЭЛ24ОМ1 настроить загрузку операционной системы из еММС согласно инструкции:
 - 1. Перейти в режим монитора U-Boot (более подробно см. документ "Загрузчик U-Boot для 1892BM14Я. Руководство программиста").
 - 2. Выбрать загрузку ОС из еММС:

```
setenv boot_targets "legacy_mmc0 mmc0"
saveenv
boot
```

- 3. Настроить Wi-Fi-роутер: включить Wi-Fi с шифрованием WPA2, указать имя сети (далее "имя_сети"), включить DHCP-сервер, подключить ПК кабелелем Ethernet к роутеру.
- 4. На модуле создать файл конфигурации wpa_supplicant.conf, выполнив в консоли:

wpa_passphrase имя_сети > /etc/wpa_supplicant.conf

Приложение wpa_passphrase будет ожидать ввода пароля без вывода сообщений. Ввести пароль от сети, нажать Enter.

5. Установить сетевое соединение wlan0:

wpa_supplicant -B -i wlan0 -c /etc/wpa_supplicant.conf

После команды пронаблюдать вывод строки Successfully initialized wpa_supplicant.

6. Считать IP-адрес модуля в сети Wi-Fi:

ifconfig wlan0

В поле inet addr будет указан IP-адрес модуля в сети Wi-Fi (далее — "адpec_cepвepa").

Запуск теста:

На модуле запустить сервер:

iperf --server

На ПК запустить клиент:

iperf --time=5 --client адрес_сервера

Ожидаемое время исполнения: не более 7 секунд.

Пример результата теста:

[ID] Interval Transfer Bandwidth [3] 0.0-5.0 sec 7.75 MBytes 12.9 Mbits/sec

Критерий прохождения теста:

Для модулей Салют-ЭЛ24Д1, Салют-ЭЛ24Д2, Салют-ЭЛ24ОМ1 значение поля Bandwidth составляет не менее 10.00 Mbits/sec. В случае, если значение поля Bandwidth ниже ожидаемого, то необходимо настроить Wi-Fi-роутер на использование другого канала и повторить тестирование.