

ДИСТРИБУТИВ ОС GNU/LINUX НА БАЗЕ BUILDROOT ДЛЯ 1892ВМ14Я. РУКОВОДСТВО ПРОГРАММИСТА

Версия v3.0 25.06.2019

ОГЛАВЛЕНИЕ

1	О документе	3
2	Общие сведения о дистрибутиве ОС	4
3	Подготовка ПЭВМ 3.1 Аппаратные требования к ПЭВМ	5 5 5
4	Состав дистрибутива ОС 4.1 Buildroot .	6 6 7 7 7
5	Состав образа SD-карты	8
6	Сборка дистрибутива 6.1 Артефакты сборки	9 9 10 10
7	Подготовка носителя ОС	12
	7.1 Прошивка SD-карты	12 12
8	Прошивка SPI флеш-памяти 8.1 Прошивка SPI флеш-памяти через BootROM	14 14 14
9	Настройка ОС 9.1 Увеличение объема ОЗУ . 9.2 Включение драйвера framebuffer vpoutfb . 9.3 Настройка сети . 9.4 Настройка 6LoWPAN . 9.5 Параметры запуска Linux . 9.6 Добавление программ в образ SD-карты . 9.7 Управление выводами GPIO из пространства пользователя . 9.8 Разметка свободной области SD-карты и монтирование в /data .	15 15 15 15 16 16 16 17
10	Запуск модуля	18
11	Сообщения системному программисту	19

1. О ДОКУМЕНТЕ

Документ описывает дистрибутив операционной системы GNU/Linux на базе Buildroot для микросхемы 1892BM14Я (MCom-02), процедуру сборки и прошивки образа SD-карты с операционной системой и настройки операционной системы (далее — "OC").

Документ описывает дистрибутив версии 3.0.

2. ОБЩИЕ СВЕДЕНИЯ О ДИСТРИБУТИВЕ ОС

Дистрибутив ОС GNU/Linux предназначен для распространения исходных кодов ОС GNU/Linux, инструментального ПО и скриптов сборки ОС GNU/Linux. В состав ОС входит набор демо-тестов для проверки работы блоков и интерфейсов СнК в составе модуля.

Дистрибутив ОС поддерживает следующие модули на базе микросхемы 1892ВМ14Я:

- Салют-ЭЛ24Д1 r1.3;
- Салют-ЭЛ24Д1 r1.4;
- Салют-ЭЛ24Д1 r1.5;
- Салют-ЭЛ24Д2 r1.1;
- Салют-ЭЛ24ОМ1 r1.1 с установленным Салют-ЭЛ24ПМ1 r1.1 или Салют-ЭЛ24ПМ1 r1.2;
- Салют-ЭЛ24ОМ1 r1.2 с установленным Салют-ЭЛ24ПМ1 r1.2, Салют-ЭЛ24ПМ2 r1.0 или Салют-ЭЛ24ПМ2 r1.1.

Дистрибутив ОС распространяется в виде архива исходных кодов. Основные компоненты дистрибутива (подробнее см. *Cocmaв дистрибутива OC*):

- Buildroot с дополнительными пакетами для поддержки MCom-02,
- ядро Linux с поддержкой MCom-02,
- загрузчик U-Boot с поддержкой MCom-02,
- утилиты прошивки модулей на базе MCom-02.

Результатом сборки дистрибутива являются (подробнее см. Сборка дистрибутива):

- Образ SD-карты, содержащий ОС GNU/Linux. Образ SD-карты является унифицированным и совместим со всеми поддерживаемыми модулями.
- Образы загрузчика U-Boot для всех поддерживаемых модулей.

3. ПОДГОТОВКА ПЭВМ

3.1 Аппаратные требования к ПЭВМ

ПЭВМ должна иметь конфигурацию:

- не менее 4 ГиБ ОЗУ, 20 ГиБ свободного места на НЖМД или твердотельном накопителе;
- на ПЭВМ должен быть установлен кард-ридер SD-карт;

Для работы с модулем требуется дополнительное оборудование:

- microUSB-USB кабель;
- патч-корд Cat5e;
- MicroSD-карта;
- опционально: USB-флеш-накопитель.

3.2 Программные требования к ПЭВМ

- 1. Операционная система ПЭВМ CentOS 7.5 x86-64.
- 2. Для прошивки образов и работы с UART пользователь должен быть добавлен в группы *disk, dialup*.
- 3. Для сборки дистрибутива в ОС ПЭВМ должны быть установлены RPM-пакеты, перечисленные в файле Dockerfile (см. *Скрипты сборки в Docker-контейнере*):

sudo yum install <packages-from-dockerfile> -y

Примечание: Для установки пакетов на ПЭВМ должен быть настроен доступ в интернет.

Для работы с терминалом UART должны быть установлены RPM-пакеты minicom, putty, а также sshpass для прошивки eMMC по SSH.

- 4. В зависимости от модели используемого USB-UART переходника необходима установка драйверов.
- 5. При сборке дистрибутива в Docker-контейнере требуется дополнительная настройка ПЭВМ, подробнее см. *Сборка в контейнере Docker*.

4. СОСТАВ ДИСТРИБУТИВА ОС

Дерево исходных кодов дистрибутива представлено на диаграмме:

}	buildroot		
	├		
	dl		
	L output		
	L		
}	Dockerfile		
}	external		
	├ board		
	├ Config.in		
	├ configs		
	├ external.desc		
	├ external.mk		
	├ overlay		
	package		
	scripts		
	L toolchain		
	Makefile		
	Makefile.docker		
	Makefile.u-boot		
	tools		
	L mcom02-flash		
L	u-boot		

Компоненты исходного кода представлены в главах:

- Buildroot,
- загрузчик U-Boot,
- скрипты сборки в Docker-контейнере,
- дополнительные утилиты.

4.1 Buildroot

Пакет состоит из компонентов:

```
buildroot Исходные коды инструмента Buildroot<sup>1</sup>. Базовая версия Buildroot — 2018.02<sup>2</sup>. Некоторые рецепты пакетов Buildroot изменены.
```

Buildroot сконфигурирован файлом конфигурации external/configs/ mcom_defconfig. В директории buildroot/dl содержатся архивы исходных кодов всех пакетов данной конфигурации.

¹ https://buildroot.org/

² https://git.buildroot.net/buildroot/commit/?h=2018.02

Архив buildroot/dl/linux-mcom02*.tar.gz — исходные коды ядра Linux 4.4.178.2³.

- **external** Внешнее дерево пакетов Buildroot для поддержки MCom-02. Дерево оформлено в соответствии с описанием Buildroot br2-external tree⁴.
- Makefile Скрипт сборки Buildroot. Скрипт устанавливает переменную BR2_EXTERNAL с указанием до директории external и вызывает make в директории buildroot. Т.о. при вызове make в корневой директории дистрибутива доступны все стандартные цели Buildroot⁵, например: make help — вывод справки по целям Buildroot.

Результатом сборки Buildroot являются образ SD-карты и инструментальные средства Buildroot SDK для ПЭВМ (подробнее см. *Артефакты сборки*).

4.2 Загрузчик U-Boot

Загрузчик состоит из компонентов:

- **u-boot** Исходные коды загрузчика U-Boot версии 2019.01.0.4. Описание загрузчика см. документ "Загрузчик U-Boot для 1892BM14Я. Руководство программиста".
- **Makefile.u-boot** Скрипт сборки образов U-Boot всех поддерживаемых модулей. Для сборки U-Boot скрипт использует инструментальные средства Buildroot SDK.

Результатом сборки U-Boot являются образы перечисленные в главе Артефакты сборки.

4.3 Скрипты сборки в Docker-контейнере

Состав скриптов:

Dockerfile Файл конфигурации Docker-образа⁶ для среды сборки дистрибутива.

Makefile.docker Скрипт сборки Docker-образа и сборки дистрибутива в контейнере Docker.

4.4 Дополнительные утилиты

tools/mcom02-flash Пакет MCom-02 flash tools версии 2.1.1. Пакет состоит из утилит для прошивки SPI флеш-памяти и SD/MMC-карты. Подробнее см. Прошивка SPI флеш-памяти.

³ https://github.com/elvees/linux/tree/mcom02/v4.4.178.2

⁴ https://buildroot.org/downloads/manual/manual.html#outside-br-custom

⁵ https://buildroot.org/downloads/manual/manual.html#make-tips

⁶ https://docs.docker.com/

5. СОСТАВ ОБРАЗА SD-КАРТЫ

Схема разбиения образа SD-карты представлена в таблице 5.1.

Таблица 5.1. Схема	разбиения с	образа SD-ка	рты на области
--------------------	-------------	--------------	----------------

Область	Начало (байт)	Размер (байт)	Примечание
MBR	0	512	
Раздел boot	1 МиБ	128 МиБ	Раздел с файловой системой FAT32
Раздел root	129 МиБ	1 ГиБ	Раздел с файловой системой ЕХТ4 с корневой
			файловой системой rootfs

На разделе *boot* содержится скомпилированное ядро Linux — файл zImage.

6. СБОРКА ДИСТРИБУТИВА

Перед сборкой дистрибутива необходимо:

1. Разархивировать архив дистрибутива (<package-name> — имя архива без расширения tar.bz2)

tar xf <package-name>.tar.bz2

Предупреждение: Полный путь к архиву и имя архива не должны содержать пробелов.

2. Сменить текущую рабочую директорию в распакованную директорию:

```
cd <package-name>
```

Сборка дистрибутива выполняется в ОС ПЭВМ или в контейнере Docker.

6.1 Артефакты сборки

Результатом сборки дистрибутива являются:

- 1. Образ SD-карты buildroot/output/images/mcom02-buildroot-sdcard.img, состав образа описан в главе *Cocmaв образа SD-карты*.
- 2. Инструментальные средства Buildroot SDK для ПЭВМ в директории buildroot/ output/host.
- 3. Образы SPI флеш-памяти uboot-images/*.img. Соответствие модулей и образов загрузчика:
 - mcom02-salute-el24d1-r1.3-uboot.img Салют-ЭЛ24Д1 r1.3;
 - mcom02-salute-el24d1-г1.4-uboot.img Салют-ЭЛ24Д1 r1.4;
 - mcom02-salute-el24d1-r1.5-uboot.img Салют-ЭЛ24Д1 r1.5;
 - mcom02-salute-el24d2-r1.1-uboot.img Салют-ЭЛ24Д2 r1.1;
 - mcom02-salute-el24pm1-r1.1-1.2-om1-r1.1-1.2-uboot.img Салют-ЭЛ24ОМ1 с Салют-ЭЛ24ПМ1;
 - mcom02-salute-el24pm2-r1.2-om1-r1.1-1.2-uboot.img Салют-ЭЛ24ОМ1 с Салют-ЭЛ24ПМ2.

Совместимость ревизий модулей ОМ и ПМ приведена в Таблице совместимости⁷.

⁷ http://multicore.ru/index.php?id=1389

6.2 Сборка в ОС ПЭВМ

1. Выполнить команду для сборки Buildroot и образа SD-карты:

make

Длительность сборки составляет около 150 минут и зависит от производительности СРU ПЭВМ.

Результатом сборки являются образ SD-карты и Buildroot SDK.

- 2. Собрать образ U-Boot:
 - 1. Выполнить команду для вывода справки по целям скрипта, запомнить цель соответствующую используемому модулю:

make -f Makefile.u-boot help

2. Выполнить команду для сборки U-Boot. Пример команды сборки загрузчика модуля Салют-ЭЛ24Д1 r1.5:

make -f Makefile.u-boot saluted1-r15

Peзультатом сборки данного примера является файл uboot-images/mcom02-saluteel24d1-г1.5-uboot.img.

6.3 Сборка в контейнере Docker

Сборка в контейнере Docker предназначена для организации воспроизводимой сборки (например, непрерывной интеграции) и не рекомендуется для разработки и отладки скриптов сборки.

Предупреждение: В случае если сборка Buildroot была выполнена в контейнере, то повторные запуски сборки (после реконфигурации, изменения исходных кодов пакетов) также должны выполняться в контейнере. Повторный запуск сборки Buildroot в ОС ПЭВМ будет завершаться ошибкой. Для очистки генерируемых промежуточных файлов Buildroot необходимо выполнить make clean.

Причины:

- Рабочая директория Buildroot на файловой системе ОС ПЭВМ и на файловой системе контейнера имеет различные пути.
- При сборке скрипты Buildroot устанавливают абсолютные пути в генерируемых скриптах сборки.

Для сборки в контейнере Docker необходимо:

- 1. Установить и настроить сервис Docker:
 - Установить Docker версии 17.07 или выше на ПЭВМ согласно инструкции Get Docker CE for CentOS⁸.

⁸ https://docs.docker.com/install/linux/docker-ce/centos/

- 2. Добавить текущего пользователя в группу *docker* согласно инструкции Postinstallation steps for Linux⁹.
- 3. Настроить прокси для сервиса Docker (при необходимости) согласно инструкции Control Docker with systemd¹⁰.
- 4. Настроить прокси для клиента Docker (при необходимости) согласно инструкции Configure the Docker client¹¹.
- 2. Запустить сборку образа Docker:

```
make --file Makefile.docker checkenv image
```

Проверить, что образ создан командой docker images | grep buildroot. Пример вывода:

```
elvees mcom02-buildroot-centos-v1.0 ad261c2c728c 26 hours ago 533MB
```

3. Запустить сборку Buildroot и образа SD-карты в контейнере:

make -f Makefile.docker buildroot

4. Запустить сборку образов U-Boot всех поддеживаемых модулей в контейнере:

make -f Makefile.docker uboot

Результатом сборки являются образы, перечисленные в главе Артефакты сборки.

⁹ https://docs.docker.com/install/linux/linux-postinstall/

¹⁰ https://docs.docker.com/config/daemon/systemd/

¹¹ https://docs.docker.com/network/proxy/#configure-the-docker-client

Дистрибутив ОС GNU/Linux на базе Buildroot для 1892BM14Я. Руководство программиста

7. ПОДГОТОВКА НОСИТЕЛЯ ОС

7.1 Прошивка SD-карты

Для записи образа на SD-карту необходимо:

1. Извлечь SD-карту из кард-ридера ПЭВМ и считать список устройств командой:

ls -la /dev/sd*

- Установить SD-карту в кард-ридер ПЭВМ и повторно считать список устройств командой ls -la /dev/sd*. Вычесть из списка устройств после установки SD-карты список устройств до установки карты и получить устройство /dev/sdX и/или список устройств /dev/sdX1, /dev/sdX2... (где 1, 2, ... номера разделов SD-карты). В случае, если получен список устройств, то получить устройство /dev/sdX отбрасыванием последней цифры из устройства соответствующего первому разделу SDкарты /dev/sdX1.
- 3. Записать образ на SD-карту:

4. Извлечь SD-карту из кард-ридера ПЭВМ.

7.2 Прошивка еММС

Для прошивки образа в память eMMC на модулях Салют-ЭЛ24ПМ1 и Салют-ЭЛ24ПМ2 выполнить:

- 1. Запустить модуль. Загрузка системы должна быть произведена с SD-карты.
- 2. Подключиться к модулю по терминалу UART и считать его IP-адрес командой ifconfig, значение IP-адреса сохранить на ПЭВМ в переменной TARGET_IP_ADDR:

TARGET_IP_ADDR=<IP-адрес-модуля>

3. В терминале на ПЭВМ установить переменную с путём до файла образа:

IMG_PATH=<путь-до-файла-образа-SD-карты>

4. Выполнить на ПЭВМ команду:

```
dd if="$IMG_PATH" bs=4M | sshpass -p root ssh root@$TARGET_IP_ADDR "dd of=/

→dev/mmcblk0 bs=4M; sync"
```

5. Проверить корректность записи образа, для этого на ПЭВМ выполнить команду:

IMG_SIZE=\$(stat -c%s "\$IMG_PATH")

sshpass -p root ssh root@\$TARGET_IP_ADDR "dd if=/dev/mmcblk0 bs=4M count=\$((\$\simeq\$IMG_SIZE / 1024 / 1024 / 4)) | head -c \$IMG_SIZE | md5sum"

Полученную MD5-сумму сравнить с MD5-суммой записанного файла образа.

8. ПРОШИВКА ЅРІ ФЛЕШ-ПАМЯТИ

8.1 Прошивка SPI флеш-памяти через BootROM

Прошивка SPI флеш-памяти модуля *образом загрузчика U-Boot* через BootROM выполняется в случае, если загрузчик повреждён или не прошит. Операция трудозатратна: требуются ручные циклы переключения питания и изменение состояния переключателей *BOOT* на модуле.

Прошивка выполняется утилитами из пакета MCom-02 flash tools (см. *Дополнительные утилиты*), согласно документу "Инструкция по прошивке SPI флеш-памяти модулей на базе 1892BM14Я".

8.2 Прошивка SPI флеш-памяти из ОС модуля

Для прошивки SPI флеш-памяти из ОС модуля используется утилита mcom02-fw-update: необходимо скопировать образ с ПЭВМ на ФС устройства (например, командой scp) и выполнить на устройстве:

mcom02-fw-update <image-file>

Предупреждение: Во время исполнения процесс прошивки не должен прерываться.

Для прошивки с восстановлением переменных окружения U-Boot используется опция - г:

mcom02-fw-update -r <image-file>

Подсказка: Для печати и установки переменных окружения загрузчика U-Boot в OC модуля используются утилиты fw_printenv и fw_setenv соответственно.

9. НАСТРОЙКА ОС

9.1 Увеличение объема ОЗУ

Доступный объем ОЗУ по умолчанию равен 1 ГиБ для модулей Салют-ЭЛ24Д1 и Салют-ЭЛ24Д2, 2 ГиБ — для модулей Салют-ЭЛ24ОМ1. Для увеличения объема ОЗУ до 2 ГиБ необходимо активировать второй контроллер DDR (если применимо для данного модуля).

Включение контроллера DDR выполняется установкой значения enable для переменной окружения ddrctl_cmd в режиме монитора загрузчика (подробнее см. "Загрузчик U-Boot для 1892BM14Я. Руководство программиста"):

```
setenv ddrctl_cmd enable
saveenv
```

9.2 Включение драйвера framebuffer vpoutfb

По умолчанию образ SD-карты собирается с выключенным модулем ядра vpoutfb для модулей Салют-ЭЛ24Д1 и Салют-ЭЛ24Д2. При необходимости включение произвести путем удаления строки modprobe.blacklist=vpoutfb из переменной окружения cmdline в режиме монитора загрузчика (подробнее см. "Загрузчик U-Boot для 1892BM14Я. Руководство программиста")

9.3 Настройка сети

По умолчанию ОС настроена на получение сетевого адреса по DHCP. Настройка параметров сети задаётся в конфигурационных файлах /etc/systemd/network/*.network и /usr/lib/systemd/network/*.network на корневой файловой системе. Полная документация по настройке сети доступна в документации systemd¹².

Имя хоста по умолчанию — mcom02. Для изменения имени хоста необходимо отредактировать конфигурационные файлы /etc/hostname и /etc/hosts на корневой файловой системе.

9.4 Настройка 6LoWPAN

Сетевой интерфейс 6LoWPAN обеспечивает взаимодействие по протоколу IPv6 через сеть стандарта IEEE 802.15.4.

Параметры сетевого интерфейса задают командой ip. Для автоматической настройки интерфейса используется сервис systemd lowpan.service (выключен по умолчанию).

Для изменения IP, выставляемого сервисом, необходимо изменить файл:

¹² https://www.freedesktop.org/software/systemd/man/systemd.network

- external/overlay/elvees/usr/lib/systemd/system/lowpan.service в директории исходных кодов на ПЭВМ;
- или /usr/lib/systemd/system/lowpan.service на файловой системе на целевой платформе и перезапустить сервис:

systemctl daemon-reload systemctl restart lowpan

9.5 Параметры запуска Linux

Параметры запуска Linux задаются с помощью переменных окружения загрузчика (подробнее см. "Загрузчик U-Boot для 1892BM14Я. Руководство программиста").

Совет: При работе с Салют-ЭЛ24ОМ1 для изменения загрузочного устройства на карту памяти microSD необходимо установить переменную окружения загрузчика mmcdev в значение 1.

Дополнительные параметры запуска Linux необходимо передавать через переменную окружения cmdline загрузчика.

Параметры запуска Linux описаны в Kernel Parameters¹³.

9.6 Добавление программ в образ SD-карты

Система сборки Buildroot поддерживает добавление в сборку программ и библиотек пользователя. Подробная документация находится в директории buildroot/docs.

Возможно добавление программ на базе стандарта компьютерного зрения OpenVX (см. "ELVEES OpenVX SDK для 1892BM14Я. Руководство программиста").

9.7 Управление выводами GPIO из пространства пользователя

Управление выводами GPIO CнК осуществляется с помощью служебных файлов в /sys/ class/gpio (подробнее см. GPIO Sysfs Interface for Userspace¹⁴).

Управление выводом GPIO может быть недоступно, если он используется драйвером.

В соответствии с руководством пользователя на СнК выводы GPIO делятся на 4 группы: GPIOA, GPIOB, GPIOC, GPIOD. В Linux выводы GPIO обозначаются номерами. Соответствие базовых номеров для каждой группы приведено в таблице 9.1. Внутри групп номера идут по порядку. Например, вывод GPIOA5 соответствует номеру 480 + 5 = 485 в Linux.

¹³ https://github.com/elvees/linux/blob/mcom02/Documentation/kernel-parameters.txt

¹⁴ https://www.kernel.org/doc/Documentation/gpio/sysfs.txt

Группа	Базовый номер в Linux
GPIOA	480
GPIOB	448
GPIOC	416
GPIOD	384

Таблица 9.1. Соответствие обозначений выводов GPIO номерам в Linux

9.8 Разметка свободной области SD-карты и монтирование в /data

Для создания раздела из свободной области SD-карты и монтирования в директорию / data необходимо:

- 1. Запустить модуль.
- 2. Выполнить команду:

create-data-partition && echo "Partition successfully created"

Разметку считать завершённой успешно в случае вывода в терминал скриптом сообщения:

Partition successfully created

10. ЗАПУСК МОДУЛЯ

Для запуска модуля необходимо выполнить следующие действия:

- 1. Собрать образ SD-карты и образ загрузчика для модуля.
- 2. Записать образ SD-карты.
- 3. Прошить SPI флеш-память модуля образом загрузчика.
- 4. Настроить ОС.
- 5. Установить SD-карту в слот MicroSD модуля.
- 6. Установить переключатель *BOOT* модуля в положение, соответствующее загрузке из SPI флеш-памяти (подробнее см. Руководство пользователя на модуль).
- 7. Подключить модуль к источнику питания (подробнее см. Руководство пользователя на модуль).
- 8. Открыть терминал UART модуля, или установить соединение по протоколу SSH (логин: root, пароль: root).
- 9. Выполнить команду uname a. Считать модуль готовым к использованию при выводе в терминал сообщения:

Linux mcom02 4.1.41.3 #1 SMP Fri Sep 1 17:08:44 MSK 2017 armv7l GNU/Linux

11. СООБЩЕНИЯ СИСТЕМНОМУ ПРОГРАММИСТУ

Отладочный модуль выводит в терминал UART сообщения о ходе загрузки. Пример вывода в терминал при успешной загрузке:

```
DDR retention disabled
U-Boot SPL 2017.07.0.3 (Sep 01 2017 - 17:12:01)
DDR controllers init started
DDR controller #0 init done
DDR controller #1 init done
Trying to boot from SPI
U-Boot 2017.07.0.3 (Sep 01 2017 - 17:12:01 +0300), Build: v2.5-2017-09-01
CPU: MCom-compatible
Model: Salute-EL240M1 r1.1
I2C:
      readv
DRAM: 2 GiB
MMC: sdhci0@3800b000: 0, sdhci1@3800d000: 1
SF: Detected m25p32 with page size 256 Bytes, erase size 64 KiB, total 4 MiB
*** Warning - bad CRC, using default environment
In:
       serial
Out:
       serial
Err:
       serial
DDR controller #1 disabled
Hit any key to stop autoboot: 0
switch to partitions #0, OK
mmcO(part 0) is current device
reading zImage
3310424 bytes read in 211 ms (15 MiB/s)
## Flattened Device Tree blob at 7f768140
   Booting using the fdt blob at 0x7f768140
   Loading Device Tree to 4fff8000, end 4fffbcd ... OK
Starting kernel ...
Uncompressing Linux... done, booting the kernel.
     0.000000] Booting Linux on physical CPU 0x0
[
[
     0.000000] Linux version 4.1.41.3 (jenkins_drap@leo-pc.elvees.com)
(gcc version 5.2.0 (Buildroot 2015.08.1) ) #1 SMP Fri Sep 1 17:08:44 MSK 2017
. . .
Welcome!
mcom02 login:
```


АЛФАВИТНЫЙ УКАЗАТЕЛЬ

С

cmdline, 15, 16

D

ddrctl_cmd, 15

Μ

mmcdev, 16

переменная окружения cmdline, 15, 16 ddrctl_cmd, 15 mmcdev, 16